Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Aquat Anim Health ; 35(4): 280-285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872816

RESUMO

OBJECTIVE: We explore apparent infection of Salmincola californiensis arising during investigations involving this lernaeopodid copepod parasitic on Pacific salmon and trout Oncorhynchus spp. METHODS: We noted occasional unusual coloration of adult female copepods collected from the wild. These females were bright blue and pink in contrast to the cream white coloration characteristic of the copepod. We also observed that similar color patterns developed under laboratory settings when copepod eggs were held for hatching. In paired egg cases, we found consistent hatching failure of blue and pink eggs and patterns in apparent disease development that would be consistent with both vertical and horizontal transmission. RESULT: Attempts to identify the cause of the apparent infection using genetic methods and transmission electron microscopy were inconclusive. CONCLUSION: Iridovirus infection was initially suspected, but bacterial infection is also plausible. This apparent reduced hatching success of S. californiensis warrants further exploration as it could reduce local abundances. Given the potential importance of a disease impacting this copepod, a parasite that itself affects endangered and commercially important Pacific salmon and trout, future research would benefit from clarification of the apparent infection through additional sequencing, primer development, visualization, and exploration into specificity and transmission.


Assuntos
Copépodes , Doenças dos Peixes , Oncorhynchus , Parasitos , Feminino , Animais , Truta/parasitologia , Água Doce , Doenças dos Peixes/parasitologia
2.
J Anim Ecol ; 92(7): 1456-1469, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637333

RESUMO

Habitat fragmentation is an important driver of biodiversity loss and can be remediated through management actions aimed at maintenance of natural connectivity in metapopulations. Connectivity may protect populations from infectious diseases by preserving immunogenetic diversity and disease resistance. However, connectivity could exacerbate the risk of infectious disease spread across vulnerable populations. We tracked the spread of a novel strain of Mycoplasma ovipneumoniae in a metapopulation of desert bighorn sheep Ovis canadensis nelsoni in the Mojave Desert to investigate how variation in connectivity among populations influenced disease outcomes. M. ovipneumoniae was detected throughout the metapopulation, indicating that the relative isolation of many of these populations did not protect them from pathogen invasion. However, we show that connectivity among bighorn sheep populations was correlated with higher immunogenetic diversity, a protective immune response and lower disease prevalence. Variation in protective immunity predicted infection risk in individual bighorn sheep and was associated with heterozygosity at genetic loci linked to adaptive and innate immune signalling. Together, these findings may indicate that population connectivity maintains immunogenetic diversity in bighorn sheep populations in this system and has direct effects on immune responses in individual bighorn sheep and their susceptibility to infection by a deadly pathogen. Our study suggests that the genetic benefits of population connectivity could outweigh the risk of infectious disease spread and supports conservation management that maintains natural connectivity in metapopulations.


Assuntos
Doenças Transmissíveis , Pneumonia , Doenças dos Ovinos , Carneiro da Montanha , Animais , Ovinos , Pneumonia/veterinária , Variação Genética , Imunidade , Doenças dos Ovinos/epidemiologia
3.
Sci Rep ; 10(1): 6582, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313214

RESUMO

Studies in laboratory animals demonstrate important relationships between environment, host traits, and microbiome composition. However, host-microbiome relationships in natural systems are understudied. Here, we investigate metapopulation-scale microbiome variation in a wild mammalian host, the desert bighorn sheep (Ovis canadensis nelsoni). We sought to identify over-represented microbial clades and understand how landscape variables and host traits influence microbiome composition across the host metapopulation. To address these questions, we performed 16S sequencing on fecal DNA samples from thirty-nine bighorn sheep across seven loosely connected populations in the Mojave Desert and assessed relationships between microbiome composition, environmental variation, geographic distribution, and microsatellite-derived host population structure and heterozygosity. We first used a phylogenetically-informed algorithm to identify bacterial clades conserved across the metapopulation. Members of genus Ruminococcaceae, genus Lachnospiraceae, and family Christensenellaceae R7 group were among the clades over-represented across the metapopulation, consistent with their known roles as rumen symbionts in domestic livestock. Additionally, compositional variation among hosts correlated with individual-level geographic and genetic structure, and with population-level differences in genetic heterozygosity. This study identifies microbiome community variation across a mammalian metapopulation, potentially associated with genetic and geographic population structure. Our results imply that microbiome composition may diverge in accordance with landscape-scale environmental and host population characteristics.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Filogenia , Carneiro da Montanha/microbiologia , Animais , Bactérias/classificação , Fezes/microbiologia , Mamíferos/genética , Mamíferos/microbiologia , RNA Ribossômico 16S/genética
4.
Mol Ecol ; 27(10): 2334-2346, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29637641

RESUMO

Determining how species move across complex and fragmented landscapes and interact with human-made barriers is a major research focus in conservation. Studies estimating functional connectivity from movement, dispersal or gene flow usually rely on a single study period and rarely consider variation over time. We contrasted genetic structure and gene flow across barriers for a metapopulation of desert bighorn sheep (Ovis canadensis nelsoni) using genotypes collected 2000-2003 and 2013-2015. Based on the recently observed but unexpected spread of a respiratory pathogen across an interstate highway previously identified as a barrier to gene flow, we hypothesized that bighorn sheep changed how they interacted with that barrier, and that shifts in metapopulation structure influenced gene flow, genetic diversity and connectivity. Population assignment tests, genetic structure and genetic recapture demonstrated that bighorn sheep crossed the interstate highway in at least one location in 2013-2015, sharply reducing genetic structure between two populations, but supported conclusions of an earlier study that such crossings were very infrequent or unknown in 2000-2003. A recently expanded population established new links and caused decreases in genetic structure among multiple populations. Genetic diversity showed only slight increases in populations linked by new connections. Genetic structure and assignments revealed other previously undetected changes in movements and distribution, but much was consistent. Thus, we observed changes in both structural and functional connectivity over just two generations, but only in specific locations. Movement patterns of species should be revisited periodically to enable informed management, particularly in dynamic and fragmented systems.


Assuntos
Fluxo Gênico , Ovinos/genética , Distribuição Animal , Animais , Comportamento Animal , Conservação dos Recursos Naturais , Surtos de Doenças/veterinária , Meio Ambiente , Variação Genética , Genótipo , Pneumonia por Mycoplasma/epidemiologia , Pneumonia por Mycoplasma/veterinária , Isolamento Reprodutivo , Ovinos/fisiologia , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/virologia
5.
PLoS One ; 12(5): e0176960, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28464013

RESUMO

Landscape genetic studies based on neutral genetic markers have contributed to our understanding of the influence of landscape composition and configuration on gene flow and genetic variation. However, the potential for species to adapt to changing landscapes will depend on how natural selection influences adaptive genetic variation. We demonstrate how landscape resistance models can be combined with genetic simulations incorporating natural selection to explore how the spread of adaptive variation is affected by landscape characteristics, using desert bighorn sheep (Ovis canadensis nelsoni) in three differing regions of the southwestern United States as an example. We conducted genetic sampling and least-cost path modeling to optimize landscape resistance models independently for each region, and then simulated the spread of an adaptive allele favored by selection across each region. Optimized landscape resistance models differed between regions with respect to landscape variables included and their relationships to resistance, but the slope of terrain and the presence of water barriers and major roads had the greatest impacts on gene flow. Genetic simulations showed that differences among landscapes strongly influenced spread of adaptive genetic variation, with faster spread (1) in landscapes with more continuously distributed habitat and (2) when a pre-existing allele (i.e., standing genetic variation) rather than a novel allele (i.e., mutation) served as the source of adaptive genetic variation. The combination of landscape resistance models and genetic simulations has broad conservation applications and can facilitate comparisons of adaptive potential within and between landscapes.


Assuntos
Ecossistema , Fluxo Gênico , Modelos Genéticos , Seleção Genética , Carneiro da Montanha/genética , Adaptação Biológica/genética , Animais , Simulação por Computador , Clima Desértico , Genótipo , Geografia , Repetições de Microssatélites , Análise Multivariada , Sudoeste dos Estados Unidos
6.
Ecol Evol ; 6(12): 4115-28, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27516868

RESUMO

Mantel-based tests have been the primary analytical methods for understanding how landscape features influence observed spatial genetic structure. Simulation studies examining Mantel-based approaches have highlighted major challenges associated with the use of such tests and fueled debate on when the Mantel test is appropriate for landscape genetics studies. We aim to provide some clarity in this debate using spatially explicit, individual-based, genetic simulations to examine the effects of the following on the performance of Mantel-based methods: (1) landscape configuration, (2) spatial genetic nonequilibrium, (3) nonlinear relationships between genetic and cost distances, and (4) correlation among cost distances derived from competing resistance models. Under most conditions, Mantel-based methods performed poorly. Causal modeling identified the true model only 22% of the time. Using relative support and simple Mantel r values boosted performance to approximately 50%. Across all methods, performance increased when landscapes were more fragmented, spatial genetic equilibrium was reached, and the relationship between cost distance and genetic distance was linearized. Performance depended on cost distance correlations among resistance models rather than cell-wise resistance correlations. Given these results, we suggest that the use of Mantel tests with linearized relationships is appropriate for discriminating among resistance models that have cost distance correlations <0.85 with each other for causal modeling, or <0.95 for relative support or simple Mantel r. Because most alternative parameterizations of resistance for the same landscape variable will result in highly correlated cost distances, the use of Mantel test-based methods to fine-tune resistance values will often not be effective.

7.
PLoS One ; 9(3): e91358, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24646515

RESUMO

Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476-1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct.


Assuntos
Animais Selvagens/genética , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Filogenia , Carneiro da Montanha/genética , Animais , Animais Selvagens/classificação , Sequência de Bases , Extinção Biológica , Fezes/química , Feminino , Espécies Introduzidas , Ilhas , Masculino , México , Dados de Sequência Molecular , Dinâmica Populacional , Carneiro da Montanha/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA